
Wildcard Topic Management using Bloom Filter
in Distributed MQTT Brokers

Ryohei Banno∗, Yoshito Watanabe†∗
∗ Graduate School of Social Data Science, Hitotsubashi University, Tokyo, Japan

† Solid Surface Inc., Tokyo, Japan
Email: banno@computer.org, yoshito.watanabe@solidsurface.co.jp

Abstract—MQTT is a widely used protocol in IoT systems. Due
to the central role of an MQTT broker in handling messages,
large-scale systems need to distribute the load across multiple
brokers. When using multiple brokers, sharing subscription
topics among them is a common strategy to prevent message
flooding. Given the potentially large volume of topics, some
existing approaches use a Bloom filter to store and manage
them with space-saving. However, these methods have difficulties
in managing wildcards, i.e., many queries to the Bloom filter
could occur to search one topic. In this paper, we introduce
a method to handle wildcard topics efficiently using a Bloom
filter. The proposed method adds prefixes of subscription topics
to the Bloom filter. Searching for a published topic is processed
like using Trie structure while considering wildcard patterns.
Experimental results demonstrate that our method reduces the
number of queries to the Bloom filter compared to existing
methods in many cases.

Index Terms—MQTT, Publish-subscribe, Bloom filter, IoT

I. INTRODUCTION

MQTT [1] is one of the major protocols in IoT systems.
It follows a publish-subscribe messaging model [2] that pro-
vides loose coupling among components. MQTT clients can
communicate via an MQTT broker by specifying a topic. A
publisher sends a message with a topic to a broker, which
forwards the message to subscribers who have subscribed to
the topic.

Since an MQTT broker is a concentration of messages,
large-scale systems require load distribution by multiple bro-
kers [3]–[5]. Distributed brokers increase the possible number
of client connections and improve communication through-
put among IoT devices. In using multiple brokers, sharing
subscription topics among brokers is a typical approach to
avoid flooding PUBLISH messages. Figure 1 shows a simple
example. Client C2 connects to Broker B2 and subscribes to
a topic. By sharing the topic from Broker B2 to Broker B1,
Broker B1 can determine whether or not to forward PUBLISH
messages from Client C1 to Broker B2.

Since the topics shared among brokers could be large,
some existing work [6]–[8] utilizes a Bloom filter [9] or its
variants. Using a Bloom filter allows for the space-efficient
checking of the existence of topics. It significantly reduces
communication traffic and memory usage for sharing and
managing topics. However, there is a difficulty in handling

This work was supported by JST, PRESTO Grant Number JPMJPR21P8,
Japan.

Broker B2

Subscribed topics

Client C1

(Publisher)
Client C2

(Subscriber)

Broker B1

Subscribe

Publish

Fig. 1: Example of sharing subscriptions among brokers

wildcards. In the MQTT protocol, a subscription topic may
have wildcards. Since a Bloom filter uses hash functions
and hence assumes exact matching, wildcard topics cause
inefficient topic management, i.e., a large number of queries to
the Bloom filter. Such inefficiency may impair the performance
of brokers, such as throughput and latency.

In this paper, we propose a novel method to efficiently
manage wildcard topics with a Bloom filter. The proposed
method manages subscription topics by adding their prefixes
to a Bloom filter. Searching for a published topic by the
Bloom filter is processed in a manner like Trie [10] with
considering wildcard patterns. The proposed method provides
a small number of queries to the Bloom filter, especially for
diversified subscription topics.

The rest of this paper is organized as follows. Section II
describes our assumptions about distributed MQTT brokers.
Section III introduces related work on subscription manage-
ment of MQTT brokers. Section IV explains the proposed
method, while Section V presents the experimental evaluation.
Finally, we conclude this paper in Section VI.

II. DISTRIBUTED MQTT BROKERS

For large-scale systems, load distribution by multiple bro-
kers is essential to improve throughput and latency. In subse-
quent discussion, we assume there are multiple brokers and
every client connects to one of them. The clients can publish
and subscribe as if they connect to a single broker. To do so,
each broker forwards PUBLISH messages to other brokers as
needed. A simple way is forwarding all PUBLISH messages
like MQTT-ST [3].

As several studies suggest [4], [5], sharing subscription
topics and reducing traffic among brokers is an effective way
to improve performance. In this paper, we focus on the data
structure to share and manage topics. The following are the
assumptions about sharing subscription topics:

TABLE I: Examples of MQTT topics

Subscription topic Examples of matched published topics

building3/+/temperature building3/room1/temperature
building3/room2/temperature

building3/# building3/room1
building3/room2/humidity

+/# building1/room1
building2/room5/temperature

• A broker shares the subscription topics of its clients
with other brokers in response to, for example, receiving
SUBSCRIBE messages or detecting a new broker.

• When a broker receives a PUBLISH message, it checks
if there are corresponding subscriptions in other brokers
and determines subsequent actions, such as forwarding
the message to the brokers.

Note that these assumptions are general in the existing MQTT
load distribution methods. Various topologies and cooperation
ways are considerable, e.g., tree and mesh topologies, but
discussion on them is outside of the scope of this paper.

Since a set of topics could be large, using a Bloom filter is a
typical approach. That is, a broker adds topics to a Bloom filter
and shares it with other brokers. Then each broker receiving
a PUBLISH message checks the existence of the topic by the
Bloom filter. Due to the false positives in a Bloom filter, each
broker may need to discard unnecessary messages forwarded
from other brokers. We can suppress the false positive rate
by appropriately determining the size of the Bloom filter. We
omit the details for handling UNSUBSCRIBE messages, but
it can be achieved by using some variants of a Bloom filter,
like a Counting Bloom filter [11]. Subsequent sections explain
the details of MQTT topics and a Bloom filter.

A. MQTT Topics
In MQTT protocol [12], a topic is a slash-separated string of

items called topic levels, like “building3/room2/temperature”.
The maximum length of a topic is 65,535 bytes.

A client can use two kinds of wildcards for subscription
topics. One is the single-level wildcard “+” that matches any
single topic level, and the other is the multi-level wildcard
“#” that matches any number of topic levels. The multi-level
wildcard appears only at the end of a topic. Examples are
shown in Table I.

The number of topics could be enormous in some applica-
tions. For example, we can consider using location information
in topics by Spatial-ID [13], a universal space identification
scheme. Spatial-ID is similar to Slippy map tilenames1 but
extended to 3-dimensional, i.e., space is divided into voxels
in a hierarchical manner, and each voxel is assigned an ID.
Considering using such voxel IDs as topic levels, there could
be a vast number of topics where each topic has tens of levels.

B. Bloom Filter
A Bloom filter [9] is a probabilistic data structure by which

we can confirm whether an element exists or not. It is a
1https://wiki.openstreetmap.org/wiki/Slippy map tilenames (accessed June

15, 2024)

bit array of length b where initially all bits are set to 0.
Adding an element comprises the following steps: calculate
hash values by k hash functions, get k positions of the bit
array corresponding to the hash values, and set those bits to
1. To search for an element, we calculate k hash values, get k
positions, and check the bits. If all corresponding bits are 1,
the element exists in high probability. Otherwise, it does not
exist. Note that we can easily merge multiple Bloom filters by
bitwise logical disjunction.

The search result is possibly a false positive. The false
positive rate pfp is calculated as pfp = (1 − e−(kne/b))k

where ne is the number of elements. The optimal value
of k that minimizes pfp is k = (b/ne) ln 2. Assuming the
optimal k, the relationship between b and pfp is expressed as
b = −((ln pfp)/(ln 2)

2)ne.

III. RELATED WORK

Since a Bloom filter has superior space and time efficiency,
it is often used for topic management. Dominguez et al. [8],
[14] utilize a Counting Bloom filter [11], a variant of a Bloom
filter, for subscription management in topic-based publish-
subscribe messaging, and they conducted experiments with
MQTT. Other than MQTT, RabbitMQ, a message-oriented
middleware, has a “Stream Filtering” functionality that inter-
nally uses Bloom filters for subscription management [15].
Several studies on content-centric networking and named data
networking [16], [17] also take a similar approach, using a
Bloom filter for message routing. They resemble our proposed
method in terms of adding prefixes to a Bloom filter. However,
none of these consider efficient handling of the wildcards.

Naaman [6] and Chen et al. [7] introduce a Bloom filter
to share subscription topics among multiple MQTT brokers.
Their method considers wildcards. In addition to sharing a
Bloom filter of subscription topics, each broker shares a set of
wildcard topic patterns with other brokers. A wildcard topic
pattern is a set of levels where two kinds of wildcards appear.
For example, if a broker has subscription topics “a/+/c”,
“x/+/z”, “a/+/+”, and “+/+/#”, then the set of patterns to be
shared is like [{1;-1}, {1,2;-1}, {0,1;2}]. The pattern {0,1;2}
means there are one or more subscription topics in which the
single-level wildcard appears at levels 0 and 1, and the multi-
level wildcard appears at level 2. In the patterns, −1 means
there is no corresponding wildcard. Note that we assume the
lowest level is 0. When a broker receives a PUBLISH message,
it uses the Bloom filter to check whether the topic and its
variations obtained by the patterns exist. For instance, if the
published topic is “x/y/z” and the shared patterns are the same
as the above example, the following variations are searched
using the Bloom filter: “x/y/z”, “x/+/z”, “x/+/+”, and “+/+/#”.
This method assumes the number of wildcard patterns is small.
Diversified subscription topics could cause a large number of
queries to the Bloom filter.

IV. PROPOSED METHOD

We propose a method to handle wildcard topics efficiently
using a Bloom filter. The proposed method adds the prefixes

a

c

d$

+

e

f$

x

y

+$ #$

1 0 ・・・ 1
{a, x}

{a/+, x/y}

{a/+/c, a/+/e, x/y/+$, x/y/#$}

{a/+/c/d$, a/+/e/f$}

Bloom filter

Subscription topics: a/+/c/d, a/+/e/f, x/y/+, x/y/#

Extract prefixes

Add

Fig. 2: Adding topic prefixes to Bloom filter

of subscription topics to a Bloom filter. It enables checking
the existence of a topic in a manner like searching a topic
tree [18], a kind of Trie [10].

As mentioned in Section II, we assume that a broker makes
a Bloom filter by its subscriptions and shares it with other
brokers. When a broker receives a PUBLISH message, it
searches for the published topic by the Bloom filters shared
by other brokers to determine subsequent actions, such as
forwarding the message to the brokers. The following sections
describe how to manage topics with a Bloom filter in the
proposed method.

A. Adding topics to Bloom filter

To manage a topic using a Bloom filter, we use its prefixes.
Here, a prefix is consecutive topic levels from the begin-
ning to a specific level. For example, considering a topic
“foo/bar/baz”, there are three prefixes: “foo”, “foo/bar”, and
“foo/bar/baz”.

Before adding to the Bloom filter, a terminal symbol is
added to the last topic level. Hereafter, $ denotes the terminal
symbol. Then, we add each prefix to the Bloom filter. Figure 2
shows an example. A subscription topic “a/+/c/d” involves
adding the following prefixes to the Bloom filter: “a”, “a/+”,
“a/+/c”, and “a/+/c/d$”.

The size of the Bloom filter should be properly determined
to suppress false positives. We can calculate the appropriate
length of the bit array b from the allowable false positive
rate pfp and the assumed maximum number of elements
ne by the equation described in Section II-B. We can also
determine the optimal number of hash functions, k. To give an
example, assuming pfp = 0.001 and ne = 100,000, b becomes
approximately 1,437,759 bits, where k is about 10.

B. Searching for a topic

Searching for a published topic tp by the Bloom filter is
processed like Trie with considering wildcard patterns, as
shown in Figure 3. Let d denote the number of topic levels of
tp, and l0, l1, ...ld−1 denote the topic levels.

We start by searching for the following prefixes whose
number of levels is one: “#$”, “+”, and l0. These are prefixes
of conceivable subscription topics that match tp. If none of
them exists in the Bloom filter, we can conclude that there is
no matching subscription. Contrarily, if any of them exist in
the Bloom filter, the search continues to the next number of
levels. In the next step, the prefixes to search for are obtained
by connecting “#$”, “+”, and l1 behind the prefix found in

Published topic: a/b/c/d

#$ + a

#$
(a/#$)

+
(a/+)

b
(a/b)

#$
(a/+/#$)

+
(a/+/+)

c
(a/+/c)

#$
(a/+/c/#$)

+$
(a/+/c/+$)

d$
(a/+/c/d$)

1 0 ・・・ 1

Bloom filterCheck

Fig. 3: Searching for topic by Bloom filter

the Bloom filter in the previous step. Subsequently, such a
process is repeated until the number of levels reaches d. Note
that when the number of levels equals d, we add “$” at the end
of the prefixes ending with “+” or ld−1 before searching. In the
process, if any prefix ending with “$” exists in the Bloom filter,
the search is terminated at the point, and we can conclude that
there is a matching subscription in high probability. Otherwise,
the search results in that there is no matching subscription.

Figure 3 shows an example of search process, where we
assume using the Bloom filter in Figure 2. Green-colored
boxes correspond to the prefixes added in the Bloom filter. In
this case, prefixes “a”, “a/+”, and “a/+/c” exist in the Bloom
filter, and finally, “a/+/c/d$” also exists. So, it results in that
a matching subscription exists.

In the above search process, we follow the policy below:
• Use the depth-first search.
• Check the prefix ending with “#$” first at each level.

These enable early termination of the search if a matching
subscription exists.

Pseudocode is shown in Algorithm 1. The function
SEARCH returns true if topic exists in high probability and
false if it certainly does not exist. PARSE TOPIC splits a
topic into topic levels and returns a list of them. CONCAT
concatenates given strings. SEARCH HELPER is a function
recursively called for the depth-first search with the following
arguments: prefix is a prefix existing in the Bloom filter in
the previous step. level is the number of levels of prefixes we
currently intend to search for. levelList is the list of topic
levels of the published topic. From lines 8 to 14, the prefixes
to check at level are prepared. From lines 15 to 23, the search
is processed recursively by increasing level. CHECK BF is a
function that checks if the given element exists in the Bloom
filter.

C. Discussion

Since the proposed method can terminate the search if every
possible prefix at a level does not exist, fewer queries to the
Bloom filter are expected compared to the existing methods
that comprehensively search for wildcard patterns. Table II
shows the asymptotic analysis. “BF” is a naive method that
adds subscription topics to a Bloom filter and searches for all
possible wildcard patterns. “BF with patterns” is the existing
method [6], [7] described in Section III. Hereafter, we refer
to this method as BFP. We use the following notations:

• nt: The number of subscription topics.

Algorithm 1 Search process
1: function SEARCH(topic)
2: levelList← PARSE TOPIC(topic)
3: d← levelList.LENGTH()
4: levelList[d− 1]← CONCAT(levelList[d− 1], “$”)
5: return SEARCH HELPER(“”, 0, levelList)
6: end function

7: function SEARCH HELPER(prefix, level, levelList)
8: pList[0]← CONCAT(prefix, “/#$”)
9: if level = levelList.LENGTH() −1 then

10: pList[1]← CONCAT(prefix, “/+ $”)
11: else
12: pList[1]← CONCAT(prefix, “/+ ”)
13: end if
14: pList[2]← CONCAT(prefix, “/”, levelList[level])
15: for i← 0 to 2 do
16: if CHECK BF(pList[i]) = true then
17: if pList[i].ENDS WITH(“$”) = true then
18: return true
19: else
20: return SEARCH HELPER(

pList[i], level + 1, levelList)
21: end if
22: end if
23: end for
24: return false
25: end function

TABLE II: Asymptotic analysis

BF BF w/ patterns (BFP) Proposed
Memory space O(nt) O(nt + npnw) O(ntnlv)
Search time (average) Depend on wildcard usage
Search time (worst) O(2nlv) O(2nlv) O(2nlv)

• nlv: The average number of levels of topics.
• np: The number of wildcard patterns.
• nw: The average number of wildcards used in a pattern.

Regarding the memory space, the proposed method requires
a larger Bloom filter since it adds prefixes instead of topics.
The appropriate size of the Bloom filter is proportional to the
number of elements, so it becomes O(ntnlv). It is larger than
other methods but is not considered to influence significantly
because the Bloom filter is quite small compared to storing
topics as they are. The average search time strongly depends
on the usage of wildcards, so we evaluate it by simulation in
Section V. As for the worst case, all methods have exponential
orders. However, the worst case is considered to hardly occur
in the proposed method, i.e., there is a low probability of
searching every branch of the prefix tree embedded in the
Bloom filter without termination in the middle of the search.
Conversely, the existing methods are relatively easy to face
with the worst case; if there is no matching subscription topic,
all possible patterns must be searched. We also clarify this
tendency in Section V.

V. EVALUATION

To clarify the characteristics of the proposed method, we
conducted simulation experiments using an implementation in

TABLE III: Simulation parameters

Parameter Default value
Number of topics nt 6,000
Number of topic levels nlv 6
Wildcard probability pwc 0.5
Minimum wildcard level lwc 0

Java. The evaluation criterion is the number of queries to the
Bloom filter required to confirm whether a published topic has
corresponding subscription topics. The comparison targets are
BF and BFP, described in Section IV-C.

The simulation parameters are shown in Table III. For each
parameter, we conducted simulations by changing its value
with fixed default values of the other parameters. nt is the
number of subscription topics managed by the Bloom filter.
Each topic level constituting a topic is a random string where
the length is 10 or a wildcard. nlv is the number of topic levels
each topic has. In the experiments, all topics have the same
number of levels for easy analysis. pwc is the probability of
the presence of wildcard topics in nt topics. Suppose pwc =
0.5, nt/2 topics are expected to include wildcards. Note that
each wildcard topic is generated as follows. At first, a topic
without wildcards is randomly generated. Second, based on
it, all possible wildcard topics are generated. Then, one is
chosen from them with equal probability. lwc is the minimum
wildcard level. For example, if lwc = 0, all topic levels could
be a wildcard.

We conducted the experiments with the following three
patterns for subscription topics:

• Allow to include wildcard-only topics, e.g., “#” and
“+/#”.

• Exclude wildcard-only topics.
• Exclude wildcard-only topics and matching topics to the

published topic.

Wildcard-only topics match a lot of published topics. Espe-
cially, “#” matches all topics and could cause large traffic.
Hence, assuming a large-scale system, clients may avoid using
such wildcard-only topics. In addition, a PUBLISH message
does not necessarily have matching subscriptions because of
the loose coupling nature of the publish-subscribe messaging
model. We use the above three patterns to clarify the difference
in these varied situations. The published topic is generated to
have nlv topic levels. Each topic level is a random string with
a length of 10.

Figures 4 to 6 show the results. Note that BFP is denoted as
“BF w/ patterns” in these figures. We conducted simulations
10 times for each pattern and calculated the average number
of required queries to the Bloom filter. Overall, the proposed
method achieves a relatively small number of queries. Par-
ticularly, the proposed method is significantly superior to the
existing methods when the number of levels increases. For
nlv = 10 in Figure 6(b), the proposed method achieves an
average of 29.7 queries, less than two percent of BFP.

For most cases in Figures 4(a), 4(b), and 4(c), the average
number of queries is 1. This is because there are subscription

0

1

2

3

4

2000 4000 6000 8000 10000

A
vg

. #
 o

f
q

u
er

ie
s

nt (number of topics)

BF BF w/ patterns Proposed

(a)

0

1

2

3

4

2 4 6 8 10

A
vg

. #
 o

f
q

u
er

ie
s

nlv (number of levels)

BF BF w/ patterns Proposed

(b)

0

30

60

90

120

0 0.25 0.5 0.75 1

A
vg

. #
 o

f
q

u
er

ie
s

pwc (Wildcard probability)

BF BF w/ patterns Proposed

(c)

0

30

60

90

120

0 1 2 3 4

A
vg

. #
 o

f
q

u
er

ie
s

lwc (Min. wildcard level)

BF BF w/ patterns Proposed

(d)

Fig. 4: Average number of queries (with wildcard-only topics)

0

30

60

90

120

2000 4000 6000 8000 10000

A
vg

. #
 o

f
q

u
er

ie
s

nt (number of topics)

BF BF w/ patterns Proposed

(a)

0

300

600

900

1200

2 4 6 8 10

A
vg

. #
 o

f
q

u
er

ie
s

nlv (number of levels)

BF BF w/ patterns Proposed

(b)

0

30

60

90

120

0 0.25 0.5 0.75 1

A
vg

. #
 o

f
q

u
er

ie
s

pwc (Wildcard probability)

BF BF w/ patterns Proposed

(c)

0

30

60

90

120

0 1 2 3 4

A
vg

. #
 o

f
q

u
er

ie
s

lwc (Min. wildcard level)

BF BF w/ patterns Proposed

(d)

Fig. 5: Average number of queries (without wildcard-only topics)

0

30

60

90

120

2000 4000 6000 8000 10000

A
vg

. #
 o

f
q

u
er

ie
s

nt (number of topics)

BF BF w/ patterns Proposed

(a)

0

600

1200

1800

2400

2 4 6 8 10

A
vg

. #
 o

f
q

u
er

ie
s

nlv (number of levels)

BF BF w/ patterns Proposed

(b)

0

30

60

90

120

0 0.25 0.5 0.75 1

A
vg

. #
 o

f
q

u
er

ie
s

pwc (Wildcard probability)

BF BF w/ patterns Proposed

(c)

0

30

60

90

120

0 1 2 3 4

A
vg

. #
 o

f
q

u
er

ie
s

lwc (Min. wildcard level)

BF BF w/ patterns Proposed

(d)

Fig. 6: Average number of queries (without matching subscription)

topics that match most published topics, like “#”, in high
probability. In every method, such topics are searched first
to terminate the search as soon as possible. In Figure 4(c),
pwc = 0 induces a relatively large number of queries, because
there are no wildcard topics that enable termination in the
middle of the search. BFP requires only one query since there
is no wildcard patterns. In the cases lwc ≥ 1 in Figure 4(d),
the topic “#” is excluded, and therefore, the number of queries
becomes more than one in every method. For BFP, the larger
lwc is, the smaller the average number of queries becomes,
due to the decrease of wildcard patterns.

In Figures 5(a), 5(c), and 5(d), BF shows roughly the same
number of queries in every case. BF searches for all possible
wildcard patterns considered from the published topic. nt, pwc,
and lwc do not affect the number of patterns, whereas nlv

significantly affects the result of BF as shown in Figure 5(b).
BFP is primarily affected by the number of wildcard patterns
in subscription topics. Enlarging nlv increases the patterns
while increasing lwc involves a decrease in patterns.

Figure 6 shows the cases in which the published topic is
not subscribed. In such cases, BF and BFP require a large
number of queries because they need to search for considerable
patterns comprehensively. Contrarily, the proposed method
achieves a smaller number of queries since it can terminate
in the middle of the search if prefixes at a level do not exist
in the Bloom filter.

Remarkable results are shown in Figures 5(b) and 6(b).
In these cases, the proposed method achieves a significantly
smaller number of queries than the existing methods. Con-
sidering that the search of the Bloom filter occurs for every
PUBLISH message, such difference could affect the broker
performance. We confirm it in the next section.

A. Influence on broker performance

In this section, we explain an experiment to confirm the
influence of the number of queries to the Bloom filter on
the performance of a broker. The evaluation criteria are the
average egress throughput and the average latency. The former

0

10000

20000

30000

40000

0

10000

20000

30000

40000

50000

60000

0 1 10 100 1000 10000

A
vg

. l
at

en
cy

 [
m

se
c]

A
vg

. e
gr

es
s

th
ro

ug
hp

ut
 [

m
sg

/s
ec

]

of queries

Avg. egress throughput [msg/sec] Avg. latency [msec]

Fig. 7: Affect of searching Bloom filter on broker performance

is the average number of messages sent by the broker to a
subscriber per second, and the latter is the average required
time from a publisher to a subscriber. We use HiveMQ CE
2024.52 for the broker and MQTTLoader v0.8.63 for the
clients. We modified the broker implementation so that a
simplified search process of the Bloom filter is conducted
between receiving a PUBLISH message and forwarding it to
subscribers. For the Bloom filter implementation, we use guava
33.1.0-jre4, which internally uses the 128-bit MurmurHash3
hash function. The expected number of elements added to the
Bloom filter is set to 10,000, and the desired false positive
rate is set to 0.001. Before measuring the throughput and
latency, 10,000 elements are added to the Bloom filter. Each
element is a random string whose length is 100. When the
broker receives a PUBLISH message, processing the specified
number of queries to the Bloom filter occurs.

The parameters of MQTTLoader are set as follows:
• MQTT protocol version: v5.0
• The numbers of publishers and subscribers: each 1
• Ramp-up and ramp-down times: each 5 seconds
• Execution time: 70 seconds
• Payload size: 1,024 bytes
• Publish interval: 10 microseconds
We used three host machines for the publisher, subscriber,

and broker. Their specs are Intel Core i9-12900 CPU, 64 GB
RAM, 1 GbE network, and Ubuntu 22.04 OS.

Figure 7 shows the result. Increasing the number of queries
brings about smaller throughput and higher latency. Consider-
ing the results shown in Figures 4 to 6, the proposed method is
expected to perform better than the existing methods in which
the average number of queries is over 100 or 1,000 in some
situations.

VI. CONCLUSION

In this paper, we proposed a method for managing sub-
scription topics, including wildcards, using a Bloom filter.

2https://github.com/hivemq/hivemq-community-edition (accessed June 15,
2024)

3https://github.com/dist-sys/mqttloader (accessed June 15, 2024)
4https://guava.dev/ (accessed June 15, 2024)

The proposed method adds prefixes of subscription topics to
the Bloom filter and enables a Trie-like search. Experimental
results indicate that the proposed method achieves fewer
queries to the Bloom filter than the existing methods in many
cases. Particularly, when the number of topic levels is 10,
and there is no matching subscription, the required number of
queries is less than two percent of the existing methods. The
proposed method could significantly improve the performance
of distributed MQTT brokers.

In future work, we plan to conduct additional experiments
to clarify the effectiveness of performance improvement by
implementing the proposed method in some broker products.
We will also consider the strategy of exchanging the bloom
filters among brokers.

REFERENCES

[1] MQTT, https://mqtt.org/ (accessed June 15, 2024).
[2] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The

many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[3] E. Longo, A. E. Redondi, M. Cesana, A. Arcia-Moret, and P. Manzoni,
“Mqtt-st: a spanning tree protocol for distributed mqtt brokers,” in Proc.
IEEE International Conference on Communications, 2020, pp. 1–6.

[4] A. Detti, L. Funari, and N. Blefari-Melazzi, “Sub-linear scalability of
mqtt clusters in topic-based publish-subscribe applications,” IEEE Trans.
Netw. Serv. Manage., vol. 17, no. 3, pp. 1954–1968, 2020.

[5] R. Banno, J. Sun, S. Takeuchi, and K. Shudo, “Interworking layer of
distributed mqtt brokers,” IEICE Trans. Inf. Syst., vol. E102.D, no. 12,
pp. 2281–2294, 2019.

[6] N. Naaman, “Large scale connectivity infrastructure for an internet of
things platform,” in Software Architecture Conference, 2016.

[7] C. Chen, B. Mandler, N. Naaman, and Y. Tock, “Publish-subscribe
system with reduced data storage and transmission requirements,” U.S.
Patent 9 886 513, 2018.

[8] A. M. Dominguez, R. Alcarria, E. Cedeno, and T. Robles, “An ex-
tended topic-based pub/sub broker for cooperative mobile services,”
in International Conference on Advanced Information Networking and
Applications Workshops, 2013, pp. 1313–1318.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, 1970.

[10] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, no. 9, p. 490–499,
1960.

[11] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: a scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol. 8,
no. 3, pp. 281–293, 2000.

[12] OASIS Standard, “MQTT Version 5.0,” https://docs.oasis-open.org/mqtt/
mqtt/v5.0/mqtt-v5.0.html (accessed June 15, 2024), 2019.

[13] Information-Technology Promotion Agency, https://www.ipa.go.jp/
digital/architecture/guidelines/4dspatio-temporal-guideline.html (in
Japanese) (accessed June 15, 2024).

[14] A. M. Dominguez, T. Robles, R. Alcarria, and E. Cedeño, “A rendezvous
mobile broker for pub/sub networks,” in International Conference on
Green Communications and Networking, 2013, pp. 16–27.

[15] A. Cogoluègnes, “Stream filtering internals,” https://www.rabbitmq.com/
blog/2023/10/24/stream-filtering-internals (accessed June 15, 2024),
2023.

[16] J. Lee, M. Shim, and H. Lim, “Name prefix matching using bloom
filter pre-searching for content centric network,” J. Netw. Comput. Appl.,
vol. 65, pp. 36–47, 2016.

[17] J. Kim, M.-C. Ko, J. Kim, and M. S. Shin, “Route prefix caching using
bloom filters in named data networking,” Appl. Sci., vol. 10, no. 7, 2020.

[18] L. Brandl, “Mqtt topic tree & topic matching: Challenges and
best practices explained,” https://www.hivemq.com/blog/mqtt-topic-
tree-matching-challenges-best-practices-explained/ (accessed June 15,
2024), 2023.

